Global Disease Monitoring and Forecasting with Wikipedia
نویسندگان
چکیده
Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.
منابع مشابه
Investigating the accuracy of different short-term forecasting methods about stock index and the daily number of coronavirus disease (covid-19) cases in Iran
Firstly, on February 20, 2020, the World Health Organization (WHO) to declare coronavirus disease (covid-19) as a global emergency, and then a pandemic on 11th March. Like the political, social, cultural, and economic disorders caused by Corona disease, financial markets fluctuated sharply in line with Coronachr('39')s news. According to the subject importance of the present study, the short-te...
متن کاملForecasting the 2013–2014 Influenza Season Using Wikipedia
Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Unders...
متن کاملWikipedia in the Tourism Industry: Forecasting Demand and Modeling Usage Behavior
Due to the economic and social impacts of tourism, both private and public sectors are interested in precisely forecasting the tourism demand volume in a timely manner. With recent advances in social networks, more people use online resources to plan their future trips. In this paper we explore the application of Wikipedia usage trends (WUTs) in tourism analysis. We propose a framework that dep...
متن کاملUsing Methods Based on Neural Networks to Predict and Manage Diseases (A Case Study of Forecasting the Trend of Corona Disease)
Aim and background: Forecasting methods are used in various fields; one of the most important fields is the field of health systems. This study aimed to use the Artificial Neural Network (ANN) method in forecasting Corona patients in Iran. Method: The present study is descriptive and analytical of a comparative type that uses past information to predict the future, the time series of Corona in...
متن کاملOn the ranking of the disease susceptibility locus in family-based candidate gene studies: a simulation-based analysis
This paper presents a novel study of geographic information implicit in the English Wikipedia archive. This project demonstrates a method to extract data from the archive with data mining, map the global distribution of Wikipedia editors through geocoding in GIS, and proceed with a spatial analysis of Wikipedia use in metropolitan cities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014